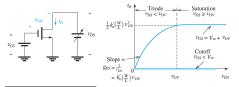

Introduction

- How does MOSEET's behave in DC circuits?
- We will neglect the effects of channel length modulation (assuming $\lambda = 0$).
- We will work in terms of overdrive voltage v_{OV} , which reduces need to distinguish between PMOS and NMOS.

MOSFET circuits at DC **Kizito NKURIKIYEYEZU,** Ph.D.

Review: Regions of Operation of a MOSFET

Transistor



MOSEET circuits at D **Review:** Regions of Operation of an NMOS

Transistor

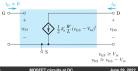
Kizito NKURIKIYEYEZU, PI

■ $v_{GS} < V_t$ —no channel. The transistor is in the cut-off mode. $i_{D} = 0$

⁰In the triode, in is controlled by three terminals (hence the name triode), unlike in the saturation mode, where the transistor's operation is controlled by two terminals

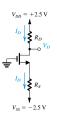
Kizito NKURIKIYEYEZU, Ph.D.	l
-----------------------------	---

3/8


MOSFET circuits at DC

June 29.

Analysis at DC


A MOSFET is non-linear, and has different operating modes:

- Cut-off, when $v_{GS} < V_t$
 - *i*_D = 0
 - no channel is formed
- 2 Triode, when $v_{GS} = V_t + v_{OV}$
 - Existence of a resistance $r_{DS} = k_n v_{OV}$ between the drain and the source
 - This model is not accurate when as the v_{DS} get close to v_{OV}
- B Saturation, when v_{DS≥vov}

Example 1

Determine the values of R_D and R_S so that the transistor operates at $i_D = 0.4mA$ and $V_D = +0.5V$. The NMOS transistor has $V_t = 0.7V$, $\mu_n C_{ox} = 100 \mu A/V^2$, $L = 1 \mu m$, and $W = 32 \mu m$. Neglect the channel-length modulation effect (i.e., assume that $\lambda = 0$).

EXAMPLES

Example 1—Solution

 Calculating R_S is a bit more complex because we need to know the voltage at

■ For a V_D voltage, we have

the source terminal.

$$R_D = \frac{V_{DD} - V_D}{I_D} = \frac{2.5 - 0.5}{0.4} = 5 \,\mathrm{k\Omega}$$
(1)

Since V_D = 0.5 > V_G, the transistor is in the saturation mode. Thus.

$$V_{DD} = +2.5 V$$

$$I_D \downarrow R_D$$

$$I_D \downarrow R_S$$

$$V_{SS} = -2.5 V$$

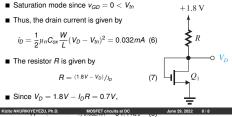
 $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} V_{OV}^2 \qquad ($ The overdrive voltage is thus given by

Kizito NKURIKIYEYEZU, Ph.D

(2)

Example 1—Solution

It is now possible to calculate V_{GS}


$$V_{GS} = V_t + V_{OV} = 0.7V + 0.5V = 1.2V$$
(4)

The source resistor is thus given by

$$R_{S} = \frac{V_{G} - V_{S} - V_{SS}}{I_{D}} = \frac{0 - 1.2 - (-2.5)}{0.4} = \frac{1}{I_{D}}$$

Example 2

Find the value of R that results in $V_D=0.7V$. The MOSFET has $V_{tn}=0.5V$, $\mu_n Cox=0.4$ mA V⁻², W=0.72 µm, L=0.18 µm and $\lambda=0$

Kallo NKURKYEYEZU, Ph.D. MOSFET elouits at DC June 29, 2022 7/8 Kallo NKURKYEYEZU, Ph.D. MOSFET elouits at DC June 29, 2022 8/8

 $V_{DD} = +2.5 \text{ V}$

Rn